
Limiting Reactants

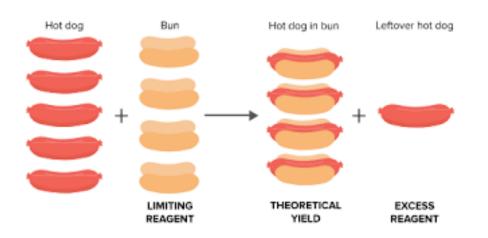
Grilled Cheese Sandwich


```
Bread + Cheese → 'Cheese Melt'
```

$$2 B + C \rightarrow B_2C$$

100 bread 30 slices 30 sandwiches

What ingredient runs out first? Cheese


What ingredient is leftover? Bread

How much of the leftover ingredient is there? 40 pieces

The amount of cheese available LIMITS the number of sandwiches

Limiting vs. Excess

- Limiting reagent
 - The first reactant used up in a reaction
 - Determines the amount of product formed
 - After it's gone, no more product formed
- Excess reagent
 - Not used up in a reaction, extra left over

The amount of buns determines how many hot dogs in buns can be formed.

After the buns run out there is one excess hot dog that cannot make a hot dog in a bun

Steps to Find Limiting Reactants

- 1. Write a balanced equation.
- 2. For each reactant
 - calculate the amount of product formed (in moles or grams)
 - Pick one product to use for comparison
- 3. Smaller answer indicates:
 - limiting reactant

 $_{1}^{1}H_{3}PO_{4} + _{3}^{3}KOH → _{1}^{4}K_{3}PO_{4} + _{3}^{3}H_{2}O$

Balance the equation

Given 5.0 moles of KOH and 2.0 moles of H₃PO₄, how many moles of K₃PO₄ can be prepared?

Use givens to find products:

5 mol KOH x $\underline{1 \text{ mol } \text{K}_3\text{PO}_4} = 1.67 \text{ mol } \text{K}_3\text{PO}_4$ 3 mol KOH

2 mol H_3PO_4 x 1 mol K_3PO_4 = 2 mol K_3PO_4 1 mol KOH

- 1.67 is less than 2 so KOH makes less product and is the limiting reactant
- H₃PO₄ is the excess reactant

• 2 Al + Fe₂O₃ \rightarrow 2 Fe + 1 Al₂O₃ If you reacted 24 grams of aluminum with 190 grams of Fe₂O₃ calculate amount of Fe produced in grams to find the limiting reagent? Find excess reagent.

- $2 \text{ Al} + \text{Fe}_2\text{O}_3 \rightarrow 2 \text{ Fe} + 1 \text{ Al}_2\text{O}_3$
- Given 24 g Al and 190 g of Fe₂O₃
- Use givens to find amount of Fe produced

Mole ratio Molar mass

```
24 g Al x <u>1 mol Al</u> x <u>2 mol Fe</u> x <u>55.85 g Fe</u> = 49.68 g Fe
```

26.98 g Al 2 mol Al 1 mol Fe

Molar mass

Mole ratio Molar mass

190 g Fe_2O_3 x $\underline{1 \text{ mol } Fe_2O_3}$ x $\underline{2 \text{ mol } Fe}$ x $\underline{55.85 \text{ g } Fe}$ = 132.89 g Fe_2O_3 1 mol Fe_2O_3 1

Al is limiting and Fe₂O₃ is excess